Exercise 2.1 Logistic regression

These exercises are based on the dataset set "2.1_Framingham_exercises.dta", which contains the individual records for the participants in the Framingham study who were summarised in the tables in Exercise 1.2. The data set includes the following variables:

sex (1=male, 2=female)
age (age, in years)
agecat (four age categories in 10-year intervals: 0=32-41, 1=42-51, 2=52-61, 3=62-71)
diabetes (treatment or glucose >=200mg/dL: 0=no diabetes, 1=diabetes)
anychd (0=any CHD during follow-up, 1=no CHD during follow-up)
prevchd (0=no prevalent coronary heart disease, CHD, 1=prevalent CHD)
prevhyp (0=no prevalent hypertension, 1=prevalent hypertension)

- 1. For individuals aged 42 and older (i.e. **agecat**=1,2,3):
 - (i) For individuals aged 42 and older (i.e. **agecat**=1,2,3), reproduce the following counts for incident CHD (**anychd**) and diabetes (already used in Exercise 1.2)

	Age	42 - 51		Age	52 - 61		Age	62 - 71	
	$\mathbf{Diabetes}$			Diabetes			Diabetes		
	Yes	No		Yes	No		Yes	No	
Yes CHD	1	32	33	4	74	78	7	69	76
No CHD	28	1553	1581	47	1221	1268	29	440	469
	29	1585	1614	51	1295	1346	36	509	545

- (ii) Run a logistic regression to obtain the crude OR and check it against your answer from Exercise 1.2.
- (iii) Estimate the adjusted OR and compare to your answer in Exercise 1.2.
- (iv) Add an interaction term to your model in (iii) and compare the results to your conclusion regarding heterogeneity in Exercise 1.2
- 2. The following exercise compares the 2-by-2 tables analysis with logistic regression

(i) Reproduce the following tables describing the association between prevalent hypertension (**prevhyp**) and diabetes for the 3505 individuals aged 42 or older:

(ii) Verify that analysing the data in 3 tables above using a logistic model with interaction term produces the results shown on the next page (Note that the confidence intervals may differ slightly depending on the software and command/package that you use):

Example 2.5 pertension (X)	(continued). Framin and Diabetes (Y): M	gham Heart S odification by	tudy: Prevalen Sex (Z)
	Exposure	Odds Ratio	95% C.I.
Unadjusted	Hypertension	2.38	1.63-3.46
Interaction	Hypertension	1.43	0.838 - 2.44
\mathbf{Model}	Sex (Female)	0.421	0.232 - 0.762
	Sex^* Hypertension	2.90	1.33-6.33

(iii) How can the OR for females found in (i) be obtained from the output in (ii)?

3. (optional)

- Run a logistic regression analysis of diabetes in the cohort aged 40 and above and record the crude OR for the effect of prevalent CHD (variable name **prevchd**) on diabetes (variable name **diabetes**), also the ln(OR) and the intercept of the logistic model.
- Select a case-control sample consisting of all cases and an equal number of controls (chosen randomly: use a "seed" so that you can reproduce your results if needed).
- (iii) Re-run the logistic regression using the case-control sample, again recording the crude OR for the effect of prevalent CHD, also the ln(OR) and the intercept. Compare to your estimate in (i): the OR or ln(OR) should agree to within sampling variation, but the intercept will be very different.

HINTS

Ex 1: Stata immediate commands csi (cross-sectional data) and cci (case-control data) Ex 3: Ex 4: Test for trend OpenEpi: Dose-Response command Stata: tabodds command

Ex 5: Stata immediate commands csi (cross-sectional data) and cci (case-control data)

Ex 13: Stata tabodds command